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Starting from the effective low-energy theory of a doped Mott insulator, obtained by exactly integrating out
the high-energy scale, we show that the effective carrier density in the underdoped regime agrees with a
two-fluid description. Namely, it has distinct temperature-independent and thermally activated components. We
identify the thermally activated component as the bound state of a hole and a charge-2e boson, which occurs
naturally in the effective theory. The thermally activated unbinding of this state leads to the strange metal and
subsequent T-linear resistivity. We find that the doping dependence of the binding energy is in excellent
agreement with the experimentally determined pseudogap energy scale in cuprate superconductors.
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The normal state of the high-Tc copper oxide supercon-
ductors exhibits a variety of anomalous features in the un-
derdoped regime which any successful theory of these mate-
rials must explain. Central to the exotica of the underdoped
cuprates are the pseudogap1,2 and strange metal phases.
These phases are closely linked because once the suppression
of the density of states at the chemical potential, a key ex-
perimental signature of the pseudogap, ceases at some criti-
cal temperature, T�, a metallic state ensues. Such behavior is
suggestive of a localized, or more properly, a “bound” elec-
tronic state, that is, liberated at T�. While the upturn3,4 of the
resistivity at low temperatures is consistent with this bound-
state scenario or charge localization5–8 a more direct signa-
ture is the activated temperature dependence10–12 of the Hall
coefficient. In a Fermi liquid, the inverse of the Hall coeffi-
cient is a measure of the carrier density which of course is
independent of temperature. However, in the underdoped cu-
prates, the inverse of the Hall coefficient is strongly tempera-
ture dependent.10–12 Gor’kov and Teitel’baum9 observed re-
markably that the charge-carrier concentration, nHall,
extracted from the inverse of the Hall coefficient in
La2−xSrxCuO4 �LSCO� obeys an empirical formula,

nHall�x,T� = n0�x� + n1�x�exp�− ��x�/T� , �1�

appropriate or a two-component or two-fluid system. One of
the components is independent of temperature, n0�x� �x the
doping level� while the other is strongly temperature depen-
dent, n1�x�exp�−��x� /T�. The key observation here is that
the temperature dependence in nHall is carried entirely within
��x ,T� which defines a characteristic activation energy scale
for the system. Gor’kov and Teitel‘baum’s9 analysis suggests
that the activation energy is set by the pseudogap energy
scale. Consequently, the bound component should be liber-
ated beyond the T� scale for the onset of the pseudogap.
Should nHall be an accurate representation of the effective
charge-carrier concentration in the cuprates, the above obser-
vation indicates that the underdoped or pseudogap phase ne-
cessitates a two-fluid description, which has been
championed13 recently to explain NMR, inelastic neutron-
scattering and thermodynamic measurements on these sys-
tems. Nonetheless, the microscopic origin of the two fluids

has not been advanced. That is, there is no microscopic pre-
scription for the precise nature of the propagating degrees of
freedom that underlie the temperature dependence of nHall.
For example, Gor‘kov and Teitel‘baum9 attributed the un-
binding of the localized charges above T� to excitations from
van Hove singularities at the bottom of the band up to the
chemical potential.

By contrast, our explanation of the two fluids relies en-
tirely on the strong correlations of a doped Mott insulator,
that is, Mottness. Here we show that the exact low-energy
theory of a doped Mott insulator14–16 described by the Hub-
bard model naturally resolves the two-component conun-
drum in the cuprates. The propagating degrees of freedom
that constitute the two fluids are the standard projected elec-
tron in the lower Hubbard band and a bound composite ex-
citation composed of a charge-2e boson and a hole. It is the
unbinding of the latter that gives rise to the strange metal
regime. The binding energy is found to be in excellent agree-
ment with experimental values for the pseudogap energy
scale.

We review some of the key features of the our effective
low-energy theory of Mottness, the complete details of
which have been worked out elsewhere.14–17 Our starting
point is the usual Hubbard model

HHubb = − t�
i,j,�

gijci,�
† cj,� + U�

i,�
ci,↑

† ci,↓
† ci,↓ci,↑, �2�

where i , j are label lattice sites, gij is equal to one if i , j are
nearest neighbors, ci� annihilates an electron with spin � on
lattice site i, t is the nearest-neighbor hopping matrix ele-
ment, and U the energy cost when two electrons doubly oc-
cupy the same site. The cuprates live in the strongly coupled
regime in which the interactions dominate as t�0.5 eV and
U=4 eV. A low-energy effective action is then obtained by
integrating out the physics on the U scale. Because double
occupancy occurs in the ground state, integrating out the
U-scale physics is not equivalent to integrating out double
occupancy. We solved this problem by extending the Hilbert
space to include a new fermionic oscillator which represents
the creation or annihilation of double occupancy only when a
constraint is solved. The new fermionic oscillator enters the
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action with a mass of U and hence represents the high-
energy scale, which must be integrated out to generate the
low-energy action. The corresponding low-energy theory
contains new degrees of freedom, namely, a charge-2e bo-
son, denoted by �i, that are absent in the original model and
are not made out of the elemental excitations. �i enters the
theory initially as the Lagrange multiplier to maintain the
constraint that in the extended Hilbert space the heavy fer-
mionic field represents the creation of double occupancy. To
leading order in t /U, the effective Hamiltonian

Heff = − t�
i,j,�

gij�ij�ci�
† cj� −

t2

U
�

j

bj
†bj −

t2

U
�

j

� j
†� j

− t�
j

� j
†cj↑cj↓ −

t2

U
�

i

�i
†bi + H.c. �3�

contains the t-J model �the first two terms� and new interac-
tions with the charge-2e boson, �i which represent mixing
with the sectors with varying numbers of doubly occupied
sites. Here bi=� jbij =� j�gijcj,�V�ci,−� with V↑=−V↓=1. The
�bi�2 term contains the spin-spin interaction as well as the
three-site hopping term. A gradient expansion of this term
shows that the spin-spin term scales as a4, a the lattice con-
stant, whereas the terms linear in b are proportional to a2.
Hence, relative to the terms linear in b, the �b�2 term is irrel-
evant. Our key contention which has been worked out exten-
sively for the cuprates14–17 is that as far as the charge degrees
of freedom are concerned, it is the interactions with the �i
sector that determine the propagating degrees of freedom,
not the dynamics arising from the spin-spin term. In particu-
lar, we show that it is the � terms that give rise to a gap in
the single-particle electron spectrum. As this gap is on the
order of t, any contribution from the spin-spin term will be
subdominant.

It is important to realize that once the heavy field is inte-
grated out, the Hilbert space reverts back that of the Hubbard
model. Further, as �i has no bare dynamics and � has no
Fock space of its own, its only contribution will be to create
bound states within the Hilbert space of the Hubbard model.
This can be seen initially by considering how the electron
operator transforms14–17

ci,�
† → �1 − ni,−��ci,�

† + V�

t

U
bici,−� + V�

t

U
�i

†ci,−� �4�

upon the integration of the high-energy scale. The first two
terms represent the standard electron operator in the lower
Hubbard band dressed with spin fluctuations. However, the
last term represents the correction due to dynamical spectral
weight transfer,18 that is the mixing with doubly occupied
sites. All such processes are mediated by �i which represents
a collective charge-2e mode arising from the dynamics of
double occupancy. The quantity �i

†ci,−� represents a bound
complex with a nonpropagating local degree of freedom. It is
from this term that the bound-state dynamics emerges.
Roughly, the two-fluid emerge from the fact that an electron
at low energies is a linear superposition of an essentially free
part, the first two terms in Eq. �4� and the last term in Eq. �4�
from which the bound-state16,17 dynamics �that is, pseudogap

physics� emerges. As a result of �i, the conserved charge is
no longer just the total number of electrons but

Q = �
i�

ci�
† ci� + 2�

i

�i
†�i. �5�

In order to obtain the electron Green function for the ef-
fective Hamiltonian, we treat �i as spatially independent,
owing to a lack of gradient terms in that field in the Hamil-
tonian. To keep track of the dependence on �i it is helpful to
introduce the rescaling �i→s�i. The electron Green function
is then written as a path integral over the � fields as

G�k,�� =
1

Z
� �D����D��FT	� �dci

���dci�ci�t�ci
��0�

�exp
−� L�c,��dt�� , �6�

where the effective Lagrangian L is expressed in a diagonal-
ized form

L = �
k�

�k�
� �̇k� + �

k

�E0 + Ek − 	k� + �
k�

	k�k
��k, �7�

where the �k� are the Boguliubov quasiparticles and are
given by

�k↑
� = cos 
kck↑

� + sin 
kc−k↓, �8�

�k↓ = − sin 
kck↑
� + cos 
kc−k↓, �9�

where cos2 
k= 1
2 �1+

Ek

	k
�, �k=2�cos kx+cos ky�,

E0= �−2�+ s2

U ����, Ek=−gtt�k−�, 	k=Ek
2+�k

2, the gap is
proportional to s, �k=s���1− 2t

U �k�, and hence vanishes
when � is absent and gt=

2�
1+� , �=1−n. The gt term originates

from the correlated hopping term, �1−ni�̄�ci�
† cj��1−nj�̄�. The

�k�’s play the role of the fundamental low-energy degrees of
freedom in a doped Mott insulator. That is, they are the natu-
ral propagating charge degrees of freedom. Note they depend
in a complicated way on the �i field and consequently are
heavily mixed with the doubly occupied sector. Starting from
Eq. �7�, we integrate over the fermions in Eq. �6� to obtain,

G�k,�� =
1

Z
� �D����D��G�k,�,��

�exp−�k�E0+Ek−	k−2/ ln�1+e−	k��, �10�

where

G�k,�,�� =
sin2 
k���
� + 	k���

+
cos2 
k���
� − 	k���

�11�

is the exact Green function corresponding to the Lagrangian,
Eq. �7�, which has a two-branch structure, corresponding to
the bare electrons and the coupled holon-doublon state, re-
spectively. The role of the � field, which determines the
weight of the second branch, is vital to our understanding of
the properties of Mott systems, as was demonstrated
previously.16,17 It is trivial to see that in the limit of vanishing
s �no � field�, the �k�’s reduce to the bare electron operators
ck and the first term in Eq. �11� vanishes. The two-fluid na-
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ture of the response stems from this fact of the theory.
Namely, the first term contributes only when ��0 and the
second when �=0. These contributions correspond to the
dynamical and static components of the spectral weight, re-
spectively.

We obtained the Green function G�k ,�� by a numerical
integration of Eq. �10� over the � field. The Hall coefficient
RH was computed from the spectral function A�k ,�� using
the Kubo formula19

RH = �xy/�xx
2 , �12�

where

�xy =
2�2�e�3aB

3�2 � d�
 � f���
��

� 1

N
�
k
� ��k

�kx
�2

�
�2�k

�ky
2 A�k,��3

�13�

and

�xx =
�e2

2�a
� d�
−

� f���
��

� 1

N
�
k
� ��k

�kx
�2

A�k,��2 �14�

with �xx and �xy the diagonal and off-diagonal components
of the conductivity tensor, respectively, f��� is the Fermi
distribution function and B is the normal component of the
external magnetic field. The effective charge-carrier density
nHall is then obtained using the relation RH=−1 / �nHalle�.

Figure 1 shows a set of plots of nHall as a function of the
inverse temperature, each corresponding to a different value
of hole doping, x, in the underdoped regime �x ranging from
0.05 to 0.20�. The plots fit remarkably well to an exponen-
tially decaying form. In other words, the computed charge-
carrier density within the charge-2e boson theory of a doped
Mott insulator agrees well with the form given in Eq. �1�
proposed by Gor’kov and Teitel’baum.9 The inset shows the
temperature-independent part of the charge density as a func-
tion of x. This quantity exceeds the nominal doping level.

This deviation is expected as the Hall coefficient is expected
to change sign around x=0.3 �Ref. 20� in hole-doped
samples.

The “binding energy,” ��x�, was extracted for each dop-
ing and plotted in Fig. 2 using Eq. �1�. Shown here also are
the values for the experimentally determined pseudogap en-
ergy for LSCO.11,12,21 The magnitude of ��x� falls with in-
creasing hole doping as is seen experimentally and hence is
consistent with its interpretation, even quantitatively, as a
measure of the pseudogap temperature T�. A rough estimate
of T�,

T��x� � − ��x�/ln�x� , �15�

may be obtained from ��x�, by equating the number of
doped carriers x with that of the activated ones
n1�x�exp�−��x ,T�� as proposed by Gor’kov and
Teitel’baum.9 Figure 3 shows a plot of T� as a function of x.
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FIG. 1. �Color online� nHall plotted as a function of inverse
temperature for four different values of hole doping x: �1� solid
circles, x=0.05, �2� diamonds, x=0.10, �3� triangles, x=0.15, and
�4� squares, x=0.2. The inset shows the temperature-independent
part of the carrier density as a function of x. Note it exceeds the
nominal doping level indicated by the straight line.
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FIG. 2. �Color online� ��x� �solid circles� obtained from fitting
the plots in Fig. 1 to Eq. �1� plotted as a function of hole doping x.
The experimental values are also shown for LSCO: solid triangles
�Refs. 11, 12, and 21� and squares �Ref. 10�. The excellent agree-
ment indicates that the bound component contributing to the charge
density does in fact give rise to the pseudogap.
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FIG. 3. �Color online� T��x� �solid circles� obtained from Eq.
�15� plotted as a function of hole doping x. The experimental data
were gleaned from the following: open circles are from Ref. 1 T�,
open triangles �Tm� from Ref. 22, and closed triangles �Tm� from
Ref. 23.
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This is in qualitative agreement with the experimentally ob-
tained estimates of T�.1,22,23

Ultimately it is not surprising that the pseudogap14,16 ap-
pears within the charge-2e boson theory. As mentioned pre-
viously, the charge-2e boson is a local collective nonpropa-
gating mode that is restricted to mediate electronic states
within the Hilbert space of the Hubbard model. The only
option is that the boson binds to a hole to form a new
charge-e state. As an electron at low energies �Eq. �4�� is a
linear superposition of the standard state in the lower Hub-
bard band and the bound state mediated by the charge-2e
boson, a two-fluid charge model is a natural consequence.
This further supports the idea16 that the pseudogap tempera-
ture T� represents the boundary between bound and unbound
charge-2e bosons where the binding energy to excite a boson
vanishes and T-linear resistivity obtains.16,17 The mechanism
for T-linear resistivity is simple within this model. Once the

binding energy of the boson vanishes, bosons are free to
scatter off the electrons. The resistivity of electrons scatter-
ing off of bosons is well known to scale linearly with tem-
perature above the energy to create a boson. Hence, this
mechanism is robust and should persist to high temperatures.
Consequently, the charge-2e boson theory offers a resolution
of the pseudogap and the transition to the strange metal re-
gime of the cuprates.
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